Export 16 results:
Sort by: Author [ Title  (Asc)] Type Year
Filters: Author is S. Chandra  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Chandra S, Sinha S, Parashar M, Zhang Y, Yang Y, Hariri S.  2002.  Adaptive Runtime Management of SAMR Applications. Proceedings of the 9th International Conference on High Performance Computing (HiPC 2002). 2552:564-574.
Chandra S, Parashar M, Ray J.  2007.  Analyzing the Impact of Computational Heterogeneity on Runtime Performance of Parallel Scientific Components. Proceedings of the High Performance Computing Symposium (HPC 2007), SCS Spring Simulation Multconference (SpringSim07).
Chandra S, Parashar M.  2002.  Application Sensitive Performance Management for SAMR Applications. Research poster at ASCI/ASAP Research Review, DOE ASCI/ASAP Center of Excellence.
Zhang Y, Chandra S, Yang J, Hariri S, Parashar M.  2004.  Autonomic Proactive Runtime Partitioning Strategies for SAMR Applications. Proceedings of the NSF Next Generation Systems Program Workshop, IEEE/ACM 18th International Parallel and Distributed Processing Symposium. :8.
Chandra S, Li X, Parashar M.  2004.  Engineering an autonomic partitioning framework for Grid-based SAMR applications. High performance scientific and engineering computing. :169–187.
Chandra S, Parashar M, Hariri S.  2003.  GridARM: An Autonomic Runtime Management Framework for SAMR Applications in Grid Environments. New Frontiers in High-Performance Computing, Proceedings of the Autonomic Applications Workshop 10th International Conference on High Performance Computing (HiPC 2003). :286-295.
Rodero I, Chandra S, Parashar M, Muralidhar R, Seshadri H, Poole S.  2010.  Investigating the Potential of Application-Centric Aggressive Power Management for HPC Workloads. Proceedings of 17th Annual International Conference on High Performance Computing (HiPC 2010).
Steensland J, Thuné M, Chandra S, Parashar M.  2000.  Towards an adaptive meta-partitioner for parallel SAMR applications. Proceedings of the IASTED International Conference on Parallel and Distributed Computing Systems, Las Vegas. :425–430.